
BONUS CHAPTER 3 Creating Crowd-Pleasing Animation Eff ects BC1

 Creating Crowd-Pleasing
Animation Eff ects

Animation is just another way of telling a story.

 —CHRISTOPHER MILLER

 W hen most people think of CSS animation, they usually think of show-
stopping eff ects that make eyes dazzle and jaws drop. Nothing is wrong
with creating these big-time animation productions to show off your

artistic skills, but that’s not really the point of CSS animation. The reason you go
to the trouble of setting up animations using CSS is far more subtle and far more
useful: to make your web page interfaces easier to navigate, easier to understand,
and easier to interact with.

 This interface animation is all about using small eff ects to guide users by making
it clear, say, what action is happening now, what action the user should perform
next, or what the relationship is between diff erent interface elements. Numerous

Bonus Chapter 3

 IN THIS CHAPTER

» Understanding the diff erence
between animations and transitions

» Defi ning animation keyframes

» Applying the animation to an
element

» Customizing animation properties

» Triggering animations with pseudo-
classes or JavaScript code

BC2 HTML, CSS, & JavaScript All-in-One For Dummies

studies have shown that well-designed interface animations help to reduce cog-
nitive load (by, say preventing users from having to mentally track changing ele-
ments); keep the user engaged (we humans are hard-wired to pay attention to
moving things); prevent change blindness (where something onscreen changes
without the user noticing); and reduce user frustration (by reinforcing user
actions such as clicks with animations that mirror or complement those actions).

In this chapter, you explore the powerful and undeniably fun topic of CSS anima-
tion. You find out how to define keyframes, apply them to an object, and then
control your animations with properties and JavaScript events. After you’ve
implemented some CSS animation on your pages, you won’t be able to hear the
applause, but, believe me, it’ll be there.

Animations versus Transitions:
What’s the Difference?

A CSS transition (which I talk about in Bonus Chapter 2) is clearly a kind of ani-
mation, so what’s the difference between a CSS transition and a CSS animation?
These techniques diverge in quite a few ways, but here are the most important
differences:

 » A transition runs once, whereas an animation can run multiple times, even
indefinitely.

 » A transition applies a continuous change from an element’s default or current
state to some defined final state. An animation applies a continuous change
from a defined initial state to a defined final state.

 » At the end of a transition, the element is left with its final animating property
value; at the end of an animation, the element reverts to the initial or default
value of the animating property.

 » A transition runs in a single direction (from initial state to final state), while an
animation can run forward (from initial state to final state) or backward (from
final state to initial state).

 » The transition itself interpolates the intermediate steps that the element
undergoes from its initial state to its final state. With an animation, you can
specify one or more intermediate states that the animation must pass through.

 » A transition is defined on a particular element; the frames of an animation can
be applied to any element.

Creating Crow
d-Pleasing

Anim
ation Eff

ects

BONUS CHAPTER 3 Creating Crowd-Pleasing Animation Effects BC3

What all these differences add up to is that, although transitions are perfect for
simple animated effects, if you want effects that are more sophisticated and more
controllable, you need to use CSS animations.

Setting Up a Basic Animation
Setting up a barebones CSS animation requires two steps:

1. Specify the animation properties on the element you want to animate,
including the name of the sequence you define in Step 2.

2. Specify the beginning, intermediate, and final steps of the animation sequence,
as well as the style declarations you want applied at each step. Each animation
step is called a keyframe.

The next couple of sections take you through the details of each step.

Configuring the animation properties
CSS defines a large number of animation-related properties. For a basic anima-
tion, however, you need to set only the following properties on the element you
want to animate:

animation-name: keyframe-name;
animation-duration: duration-time;
animation-delay: delay-time;
animation-timing-function: timing-function;
animation: keyframe-name duration-time delay-time timing-

function;

 » keyframe-name: The name of the @keyframes at-rule that contains the
animation steps (as I describe in the upcoming “Specifying the animation
keyframes” section)

 » duration-time: The length of the animation in seconds (s) or millisec-
onds (ms)

 » delay-time: The amount of time you want the browser to wait before
starting the animation, expressed in seconds (s) or milliseconds (ms)

 » timing-function: A keyword or cubic-bezier() function that specifies the
timing you want to use for the animation

BC4 HTML, CSS, & JavaScript All-in-One For Dummies

I discuss duration, delay, and timing functions (including the cubic-bezier()
function) in detail in Bonus Chapter 2.

Here’s an example:

.ball {
 animation-name: bounce;
 animation-duration: 2s;
 animation-delay: 1s;
 animation-timing-function: ease-in-out;
}

Specifying the animation keyframes
You let the browser know which keyframe you want in your animation by using
the @keyframes at-rule. The @keyframes syntax enables you to define three types
of animation:

 » From an initial or default property value to a specified final property value

 » From a specified starting property value to a specified final property value

 » From a specified starting property value to a specified final property value,
with one or more intermediate property values

Animating to a final property value
The simplest possible animation is one that essentially mimics a transition. That
is, the animation starts with an element’s initial or default property value and
continuously interpolates that value until it arrives at a final property value that
you specify. Here’s the syntax:

@keyframes name {
 to {
 property: final-value;
 }
}

 » name: A unique name that identifies the keyframe rule. This is the name that
you use as the value of the animation-name property.

 » property: The CSS property you want to animate.

 » final-value: The value that you want property to have at the end of the
animation.

Creating Crow
d-Pleasing

Anim
ation Eff

ects

BONUS CHAPTER 3 Creating Crowd-Pleasing Animation Effects BC5

I’m keeping things simple by specifying just one declaration here, but you’re free
to animate multiple properties in the to block.

Here’s an example (check out bk06ch03/example01.html in this book’s example
files):

HTML:

<div class="box">Hello World!</div>

CSS:

.box {
 animation-name: rotate-it;
 animation-delay: 0s;
 animation-duration: 1s;
 animation-timing-function: ease-in-out;
}
@keyframes rotate-it {
 to {
 rotate: 1440deg;
 }
}

The div element uses class box. The CSS for that class applies the keyframe rule
named rotate-it, which uses a rotate() transform to spin the div four times
(1,440 degrees).

Animating from a starting property value
to a final property value
One of the key differences between an animation and a transition is that with an
animation, you can specify a starting value for the animating property other than
the initial or default value. In this case, the animation starts with the property
value you specify, then continuously interpolates that value until it arrives at a
final property value that you specify. Here’s the syntax:

@keyframes name {
 from {
 property: starting-value;
 }
 to {
 property: final-value;
 }
}

BC6 HTML, CSS, & JavaScript All-in-One For Dummies

 » name: A unique name that identifies the keyframe rule. This is the name that
you use as the value of the animation-name property.

 » property: The CSS property you want to animate.

 » starting-value: The value that you want property to have at the beginning
of the animation.

 » final-value: The value that you want property to have at the end of the
animation.

Here’s an example (check out bk06ch03/example02.html):

HTML:

<nav>
 Hello world!
</nav>

CSS:

nav {
 animation-name: fade-and-slide-in;
 animation-duration: 1.5s;
 animation-timing-function: ease-out;
}
@keyframes fade-and-slide-in {
 from {
 opacity: 0;
 translate: -100% 0%;
 }
 to {
 opacity: 100%;
 translate: 0%;
 }
}

The CSS applies the keyframe rule named fade-and-slide-in to the nav element.
The keyframe rule starts off with opacity set to 0 and the element translated
horizontally by -100%, which puts the element just off screen to the left. The key-
frame rule ends with opacity set to 100% and the element translated horizontally
to 0%, which puts the element’s left edge on the left side of the screen.

Creating Crow
d-Pleasing

Anim
ation Eff

ects

BONUS CHAPTER 3 Creating Crowd-Pleasing Animation Effects BC7

Animating from a starting value to a final value
with intermediate steps
Normally the web browser renders a CSS animation by interpolating smoothly
from the initial, default, or specified starting value of a property to the specified
final value of the property. That’s usually what you want, but sometimes it makes
sense to augment the animation with one or more intermediate property values.

@keyframes name {
 from {
 property: starting-value;
 }
 percentage1 {
 property: intermediate-value1;
 }
 ...
 percentageN {
 property: intermediate-valueN;
 }
 to {
 property: final-value;
 }
}

 » name: A unique name that identifies the keyframe rule. This is the name that
you use as the value of the animation-name property.

 » property: The CSS property you want to animate.

 » starting-value: The value that you want property to have at the beginning
of the animation.

 » percentage1...percentageN: One or more percentage values between 0%
(which is equivalent to the from keyword) and 100% (which is equivalent to the
to keyword). These represent intermediate steps along the animation
sequence. For example, specifying 50% represents the point halfway through
the animation.

 » intermediate-value1... intermediate-valueN: The value that you want
property to have at the corresponding step of the animation.

 » final-value: The value that you want property to have at the end of the
animation.

BC8 HTML, CSS, & JavaScript All-in-One For Dummies

Here’s an example (bk06ch03/example03.html):

HTML:

<header>
 <img src="images/notw.png" alt="News of the Word logo"

class="site-logo">
 <h1>News of the Word</h1>
 <p class="subtitle">Language news you won't find anywhere

else (for good reason!)</p>
</header>

CSS:

header {
 animation-name: slide-in-with-skew;
 animation-duration: 2s;
 animation-timing-function: cubic-bezier(0.3, 0.6, 0.5, 1.4);
}
@keyframes slide-in-with-skew {
 from {
 translate: 100% 0%;
 transform: skewX(-45deg);
 }
 75% {
 transform: skewX(0deg);
 }
 to {
 translate: 0%;
 }
}

The CSS applies the slide-in-with-skew keyframes to the header element. The
from portion of the @keyframes rule starts the element offscreen to the right
and skewed horizontally by -45 degrees (translate: 100% 0% and transform:
skewX(-45deg)). Rather than waiting until the end of the animation to reset the
skew, the rule adds a step at 75% that does this (transform: skewX(-0deg)).
Finally, the animation ends with the element in its initial horizontal position
(translate: 0%).

Creating Crow
d-Pleasing

Anim
ation Eff

ects

BONUS CHAPTER 3 Creating Crowd-Pleasing Animation Effects BC9

Customizing Your Animations
CSS offers a few more animation-related properties that you can use to gain even
greater control over how your animations run.

animation-direction: direction;
animation-fill-mode fill-mode;
animation-iteration-count: iteration-count;
animation-play-state: play-state;

 » direction: A keyword that specifies the direction the animation runs:

• normal: The animation plays from the beginning to the end.

• reverse: The animation plays from the end to the beginning.

• alternate: The animation reverses direction with each cycle, with the first
cycle playing from the beginning to the end.

• alternate-reverse: The animation reverses direction with each cycle,
with the first cycle playing from the end to the beginning.

 » fill-mode: A keyword that determines how the animation applies its
properties before the animation, after the animation, or both:

• backwards: Applies the styles of the first keyframe to the element and
leaves those styles in place during the animation delay.

• forwards: Applies the styles of the final keyframe to the element and
leaves those styles in place as long as the animation is still in effect.

• both: Applies both of the above sets of styles.

• none: Applies none of the above sets of styles.

 » iteration-count: A number specifying how many times you want the
animation to run. 1 is the default. Decimal values are allowed; for example,
iteration-count: 1.5 means that the animation runs its full cycle once,
and then runs half of another cycle. To have the animation run indefinitely,
use the keyword infinite.

 » play-state: A keyword that specifies the current state of the animation:
paused or running.

BC10 HTML, CSS, & JavaScript All-in-One For Dummies

Here’s an example that uses most of these properties (bk06ch03/example04.
html):

HTML:

<div class="ball"></div>

CSS:

.ball {
 animation-name: bounce-it;
 animation-direction: alternate;
 animation-delay: 1s;
 animation-duration: 0.75s;
 animation-iteration-count: infinite;
 animation-play-state: running;
 animation-timing-function: cubic-bezier(.5, 0.05, 1, .5);
}
.ball:hover {
 animation-play-state: paused;
}
@keyframes bounce-it {
 to {
 translate: 0 calc(100vh - 8.5rem);
 scale: 0.8 1.25;
 }
}

The CSS creates a classic bouncing-ball animation that alternates direction
(animation-direction: alternate) and runs indefinitely (animation-iteration-
count: infinite). You can also hover the mouse pointer over the ball to pause
the animation (animation-play-state: paused).

Triggering Animations
By default, an animation runs automatically when you load or refresh the web
page. This is often the behavior you want because the purpose of many animations
is to bring one or more elements into the screen or to perform some other startup
action that catches the user’s attention.

Creating Crow
d-Pleasing

Anim
ation Eff

ects

BONUS CHAPTER 3 Creating Crowd-Pleasing Animation Effects BC11

However, you’re likely to want most of your interface animations to run only after
the user has performed some action, such as hovering the mouse pointer over an
element, pressing a key, or clicking a button.

There are three main ways to control when an animation runs:

 » Using a state pseudo-class

 » Using a class

 » Using animation-play-state

The next three sections provide the details for each of these methods.

Triggering animations with pseudo-classes
First, decide on the state you want to use to trigger the animation. This is usually
an action-based pseudo-class such as :hover, :focus, or :active. Next, move all
your animation-* properties into the pseudo-class, which means your animation
runs only when the pseudo-class state is active.

For example, if you define your animation properties in an element’s :hover
pseudo-class, the animation runs only when the user hovers the mouse pointer
over the element, as shown here (bk06ch03/example05.html):

HTML:

<div class="box">Hello World!</div>

CSS:

.box:hover {
 animation-name: rotate-it;
 animation-duration: 1s;
 animation-timing-function: ease-in-out;
 animation-fill-mode: forwards;
}
@keyframes rotate-it {
 to {
 rotate: 1440deg;
 border-radius: 50%;
 }
}

BC12 HTML, CSS, & JavaScript All-in-One For Dummies

This code runs the rotate-it keyframes when you hover your mouse pointer over
the div element (with class box).

Triggering animations with JavaScript
To launch an animation with JavaScript, first move all your animation-* proper-
ties into a class, which means your animation runs only when you use JavaScript
code to add the class to the element. Your JavaScript code may run as part of an
event handler for a click on the element or when the element gains or loses focus.
Here’s an example (bk06ch03/example06.html):

HTML:

<label for="email">Email address:</label>
<input id="email" type="email">

CSS:

.alert {
 animation-name: invalid-alert;
 animation-duration: 100ms;
 animation-iteration-count: 3;
 animation-direction: alternate;
}
@keyframes invalid-alert {
 from {
 translate: -2px -1px;
 rotate: none;
 }
 50% {
 translate: 0px 0px;
 rotate: -1deg;
 }
 to {
 translate: 2px 1px;
 rotate: 1deg;
 }
}

Creating Crow
d-Pleasing

Anim
ation Eff

ects

BONUS CHAPTER 3 Creating Crowd-Pleasing Animation Effects BC13

JavaScript:

// Get a reference to the email input element
const email = document.querySelector('input[type="email"]');

// Listen for the element losing the focus
email.addEventListener('focusout', () => {
 // Does the input contain an invalid email address?
 if(!email.validity.valid) {
 // If so, add the 'alert' class to the input
 email.classList.add('alert');
 }
});

// Listen for the end of the animation
email.addEventListener('animationend', () => {
 // Put the focus back on the input
 email.focus();

 // Remove the 'alert' class
 email.classList.remove('alert');
});

The element you’re animating here is an input with type email. All the anima-
tion properties are gathered into the .alert rule, including a reference to the
keyframes named invalid-alert. Those keyframes use translate and rotate
transforms to jiggle the input element slightly. To trigger that jiggle, the Java-
Script code listens for the focusout event on the email field. This event fires when
the user tabs away from or clicks outside the input. The code checks whether the
email field contains an invalid address. If it does, the code adds the alert class to
the element, which triggers the animation.

The JavaScript code also listens for the animationend event, which fires when the
animation completes. The callback function puts the focus back inside the email
field and removes the alert class so that the field is reset just in case the anima-
tion needs to run again.

Pausing and running an animation
The final technique for triggering an animation is to leave all your animation-*
properties in the element’s rule, but also include animation-play-state: paused

BC14 HTML, CSS, & JavaScript All-in-One For Dummies

in that rule. That paused keyword means your animation doesn’t run by default.
Now you have two ways to proceed:

 » In a state pseudo-class (such as :hover), include animation-play-state:
running to start the animation when the pseudo-class state is active, as I
describe earlier in the “Triggering animations with pseudo-classes” section.

 » In a class, include animation-play-state: running to start the animation
when your JavaScript code adds the class to the element, as I describe earlier
in the “Triggering animations with JavaScript” section.

